পলির বর্জন নীতি এই বিষয়টি “বাংলাদেশ কারিগরি শিক্ষা বোর্ড” এর, “পলিটেকনিক” টেকনোলোজিগুলোর, রসায়ন (৬৫৯১৩) সাবজেক্ট এর অংশ। এছাড়া অন্যান্য শিক্ষা ব্যবস্থার রসায়ন পাঠ্যক্রমেও রয়েছে।
পলির বর্জন নীতি
কোয়ান্টাম বলবিজ্ঞানে পাউলির অপবর্জন নীতি থেকে জানা যায় যে অর্ধ-পূর্ণসংখ্যার স্পিন বা ঘূর্ণন সহ দুই বা ততোধিক অভিন্ন কণা অর্থাৎ ফার্মিয়ন একসাথে একই কোয়ান্টাম তন্ত্রের একই কোয়ান্টাম স্তরে অবস্থান করে না। এই তত্ত্বটি ১৯২৫ সালে অস্ট্রীয় পদার্থবিদ ভোল্ফগাং পাউলি ইলেকট্রন-এর জন্য ব্যাখ্যা দিয়েছিলেন। পরবর্তীকালে ১৯৪০ সালের স্পিন-পরিসংখ্যান তত্ত্বের মধ্যে সমস্ত ফার্মিয়ন অন্তর্ভুক্ত হয়েছিল।
পরমাণু মধ্যবর্তী ইলেকট্রনের ক্ষেত্রে বলা যায় যে, একটি বহু ইলেকট্রনযুক্ত পরমাণুর যেকোনো দুটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনই একই হয় না। চারটি কোয়ান্টাম সংখ্যা হল যথাক্রমে – মূখ্য কোয়ান্টাম সংখ্যা (n), গৌণ কোয়ান্টাম সংখ্যা (l), চুম্বকীয় কোয়ান্টাম সংখ্যা (mℓ) এবং ঘূর্ণন কোয়ান্টাম সংখ্যা (ms)। উদাহরণস্বরূপ, একই পারমাণবিক কক্ষককে অবস্থিত দুটি পরমাণুর n, ℓ ও mℓ সমান হলেও ঘূর্ণন কোয়ান্টাম সংখ্যা ms পৃথক হয় অর্থাৎ সমকক্ষস্থ দুটি ইলেকট্রনের ঘূর্ণন অভিমুখ পরস্পর বিপরীত। একটির মান 1/2 হলে অন্যটির মান −1/2।
বোসন কণা (পূর্ণ স্পিন বা ঘূর্ণন সম্পন্ন কণা) পাউলির অপবর্জন নীতি মেনে চলে না। যতখুশি বোসন কণা একই কোয়ান্টাম স্তরে অবস্থান করে। যেমন, বোস-আইনস্টাইন ঘনীভবন লেজার অথবা পরমাণুর সাহায্যে ফোটন উৎপাদিত হয়।
আরও জটিল বিবৃতি হল, দুটি অভিন্ন কণা বিনিময়ের সময় মোট(অনেক সংখ্যক কণা) তরঙ্গ ফাংশন ফার্মিয়নের জন্য অপ্রতিসম এবং বোসনের জন্য প্রতিসম। এর অর্থ এই যে, দুটি অভিন্ন কণার মধ্যে স্থান ও স্পিন স্থানাঙ্কগুলি বিনিময় হয়, তাহলে মোট তরঙ্গ চিত্র ফার্মিয়নের জন্য তার চিহ্ন পরিবর্তন করলেও বোসনের জন্য অপরিবর্তিত থাকে।
যদি দুটি ফার্মিয়ন একই কক্ষে অবস্থান করে, তাহলে তাদের পারস্পরিক অবস্থান বিনিময়ের পরেও তরঙ্গচিত্র অপরিবর্তিত থাকে। সম্মিলিত তরঙ্গচিত্রে উভয়েই ফার্মিয়নগুলির প্রয়োজন অনুসারে চিহ্ন পরিবর্তন করতে পারে এবং অপরিবর্তিত থাকতে পারে তখনই যখন পদার্থের অস্তিত্ব থাকে না। এই যুক্তি বোসন কণার জন্য প্রযোজ্য নয় কারণ বোসনের চিহ্নের পরিবর্তন হয় না।
বিংশ শতাব্দীর শুরুর দিকে এই ধারণা স্পষ্ট হয়ে যায় যে জোড় সংখ্যার ইলেকট্রন সহ পরমাণু ও অণুগুলি বিজোড় সংখ্যক ইলেকট্রনের তুলনায় রাসায়নিকভাবে স্থিতিশীল। গিলবার্ট নিউটন লুইসের ১৯১৬-র প্রবন্ধে “পরমাণু ও অণু” উদাহরণ স্বরূপ,তার রাসায়নিক ধর্মের ছয়টি সূত্রের মধ্যে তৃতীয় সূত্র থেকে জানা যায় যে কোনো শক্তিস্তরে (shell) সমান সংখ্যক ইলেকট্রন ধরে রাখে এবং বিশেষ করে 8টি ইলেকট্রন ধরে রাখে। যা তিনি সাধারণত একটি ঘনকের আটটি কোনে প্রতিসমভাবে সাজানো বলে ধরে নিয়েছিলেন।
১৯১৯ সালে রসায়নবিদ আর্ভিং ল্যাংমিউয়র পরামর্শ দিয়েছিলেন যে পরমাণুতে ইলেকট্রনগুলিকে কোনোভাবে সংযুক্ত বা ক্লাস্টার করা হলে পর্যায় সারণী ব্যাখ্যা করা যেতে পারে। ইলেকট্রনের গ্রুপগুলো নিউক্লিয়াসের চারপাশে ইলেকট্রনের শক্তিস্তরে অবস্থান করে। 1922 সালে, নিলস বোর তার বোর মডেল সংশোধিত করেন এই মনে করে যে নির্দিষ্ট সংখ্যক ইলেকট্রন (উদাহরণস্বরূপ 2,8 এবং 18) স্থিতিশীল “বন্ধ শেল”-এর সাথে মিলে যায়।
পাউলি এই সংখ্যাগুলির জন্য একটি ব্যাখ্যা খুঁজছিলেন, যা প্রথমে শুধুমাত্র অভিজ্ঞতামূলক ছিল। একই সময়ে তিনি পারমাণবিক বর্ণালীবীক্ষণ ও ফেরোচৌম্বক পদার্থ বা অয়শ্চৌম্বক পদার্থের জেমান ক্রিয়ায় পরীক্ষামূলক ব্যাখ্যা করার চেষ্টা করছিলেন। তিনি ১৯২৪ সালে এডমুন্ড সি. স্টোনারের গবেষণাপত্রে একটি প্রয়োজনীয় সূত্র খুঁজে পান, যা বর্ণনা করে মূখ্য কোয়ান্টাম সংখ্যা (n) এর একটি প্রদত্ত মানের জন্য একটি বাহ্যিক চৌম্বকক্ষেত্রে ক্ষারীয় ধাতব বর্ণালীতে একটি ইলেকট্রনের শক্তিস্তরের সংখ্যা।
যেখানে সমস্ত ক্ষয়প্রাপ্ত শক্তিস্তরগুলি পৃথক করা হয়, n এর একই মানের জন্য নিষ্ক্রিয় গ্যাস বা নোবেল গ্যাসগুলির বন্ধ শেলের ইলেকট্রন সংখ্যার সমান। এর ফলে পাউলি বুঝতে পেরেছিলেন যে বদ্ধ শেলগুলিতে ইলেকট্রনের জটিল সংখ্যাগুলিকে প্রতিটি স্তরে একটি ইলেকট্রনের সাধারণ নিয়মে হ্রাস করা যেতে পারে, যদি চারটি কোয়ান্টাম সংখ্যা ব্যবহার করে ইলেকট্রন স্তরকে বর্ণনা করা হয়। এবিষয়ে তিনি একটি নতুন দ্বি-মূল্যবান কোয়ান্টাম সংখ্যা প্রবর্তন করেন, স্যামুয়েল গুডস্মিথ এবং জর্জ উহলেনব্লেক ইলেকট্রন স্পিন হিসেবে চিহ্নিত করেন।
পলির বর্জন নীতি নিয়ে বিস্তারিত ঃ
আরও পড়ুন…